Bilinearity Rank of the Cone of Positive Polynomials and Related Cones

نویسندگان

  • Nilay Noyan
  • Dávid Papp
  • Farid Alizadeh
چکیده

For a proper cone K ⊂ Rn and its dual cone K∗ the complementary slackness condition xT s = 0 defines an n-dimensional manifold C(K) in the space { (x, s) | x ∈ K, s ∈ K∗ }. When K is a symmetric cone, this fact translates to a set of n linearly independent bilinear identities (optimality conditions) satisfied by every (x, s) ∈ C(K). This proves to be very useful when optimizing over such cones, therefore it is natural to look for similar optimality conditions for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for the cone, and describe a linear algebraic technique to bound this quantity. We examine several well-known cones, in particular the cone of positive polynomials P2n+1 and its dual, the closure of the moment cone M2n+1, and compute their bilinearity ranks. We show that there are exactly four linearly independent bilinear identities which hold for all (x, s) ∈ C(P2n+1), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bilinearity rank of a proper cone and Lyapunov-like transformations

A real square matrix Q is a bilinear complementarity relation on a proper cone K in R if x ∈ K, s ∈ K∗, and 〈x, s〉 = 0⇒ xQs = 0, where K∗ is the dual of K [14]. The bilinearity rank of K is the dimension of the space of all bilinear complementarity relations on K. In this article, we continue the study initiated in [14] by Rudol et al. We show that bilinear complementarity relations are related...

متن کامل

How to project onto extended second order cones

The extended second order cones were introduced by S. Z. Németh and G. Zhang in [S. Z. Németh and G. Zhang. Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768, 2016] for solving mixed complementarity problems and variational inequalities on cylinders. R. Sznajder in [R. Sznajder. The Lyapunov rank of extended second order cones. Journal of G...

متن کامل

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

Optimality Constraints For the Cone of Positive Polynomials

Consider a proper cone K ⊂ < and its dual cone K. It is well known that the complementary slackness condition xs = 0 defines an n-dimensional manifold C(K) = { (x, s) : x ∈ K, s ∈ K, xs = 0 } ⊂ <×<. When K is a symmetric cone, this manifold can be described by a set of n bilinear equalities. This fact proves to be very useful when optimizing over such cones, therefore it is natural to look for ...

متن کامل

Abstract cones of positive polynomials and their sums of squares relaxations

cones of positive polynomials and their sums of squares relaxations

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009